Large eddy simulations of turbulence diffusion within the smoothed particle hydrodynamics

Author:

Meringolo Domenico Davide1ORCID,Aristodemo Francesco2ORCID,Servidio Sergio3ORCID,Filianoti Pasquale Giuseppe F.1ORCID

Affiliation:

1. Dipartimento D.I.C.E.A.M., Università degli Studi Mediterranea di Reggio Calabria 1 , 89124 Reggio Calabria, Italy

2. Dipartimento di Ingegneria Civile, Università della Calabria 2 , Arcavacata di Rende, 87036 Cosenza, Italy

3. Dipartimento di Fisica, Università della Calabria 3 , Arcavacata di Rende, 87036 Cosenza, Italy

Abstract

We present the modeling of the main facets of turbulence diffusion, i.e., diffusion of momentum, mass, density, and heat, within the smoothed particle hydrodynamics (SPH) method. The treatment is developed considering the large eddy simulation (LES) approach and is specifically founded on the δ-LES-SPH [A. Di Mascio et al., Phys. Fluids 29, 035102 (2017)], a model characterized by a turbulence closure for the continuity equation. The novelties introduced are the modeling of the advection–diffusion equation through turbulent mass diffusivity and the modeling of the internal energy equation through heat eddy diffusivity. Moreover, a calibration for the closure term of the continuity equation is also proposed, based on the physical assumption of equivalence between turbulent mass and density diffusion rates. Three test cases are investigated. The first test regards a two-dimensional (2D) problem with splashing and wave-breaking dynamics, which is used to investigate the proposed calibration for the turbulent density diffusion term. In the second test, a 2D jet in coflow condition without gravity is studied with particular emphasis on the advection–diffusion process. The last test regards the most general condition and reproduces three-dimensional (3D) jets in crossflow conditions, in which attention is given to both the mass and heat advection–diffusion processes. The proposed methodology, which allowed us to accurately reproduce the experimental tests considered, represents a promising approach for future investigation of problems characterized by complex dynamics with turbulence and mixing involved.

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3