How to regulate pattern formations for malware propagation in cyber-physical systems

Author:

Cheng Haokuan1ORCID,Xiao Min1ORCID,Yu Wenwu2ORCID,Rutkowski Leszek3ORCID,Cao Jinde24ORCID

Affiliation:

1. College of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications 1 , Nanjing 210023, China

2. School of Mathematics, Southeast University 2 , Nanjing 210096, China

3. Systems Research Institute of the Polish Academy of Sciences 3 , 01-447 Warsaw, Poland

4. Ahlia University 4 , Manama 10878, Bahrain

Abstract

Malware propagation can be fatal to cyber-physical systems. How to detect and prevent the spatiotemporal evolution of malware is the major challenge we are facing now. This paper is concerned with the control of Turing patterns arising in a malware propagation model depicted by partial differential equations for the first time. From the control theoretic perspective, the goal is not only to predict the formation and evolution of patterns but also to design the spatiotemporal state feedback scheme to modulate the switch of patterns between different modes. The Turing instability conditions are obtained for the controlled malware propagation model with cross-diffusion. Then, the multi-scale analysis is carried out to explore the amplitude equations near the threshold of Turing bifurcation. The selection and stability of pattern formations are determined based on the established amplitude equations. It is proved that the reaction–diffusion propagation model has three types of patterns: hexagonal pattern, striped pattern, and mixed pattern, and selecting the appropriate control parameters can make the pattern transform among the three patterns. The results of the analysis are numerically verified and provide valuable insights into dynamics and control of patterns embedded in reaction–diffusion systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Taxis-driven complex patterns of a plankton model;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3