The effect of surface orientation on band alignment and carrier transfer at WS2/CdS interface: Insight from first-principles calculations

Author:

Cheng Kai1ORCID,Wu Peng1ORCID,Hu Wenbo1,Wu Lifan1,Guo Xu1,Guo Sandong1ORCID,Su Yan2ORCID

Affiliation:

1. School of Electronic Engineering, Xi’an University of Posts and Telecommunications 1 , Xi’an 710121, China

2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education 2 , Dalian 116024, China

Abstract

Loading of WS2 can greatly improve water splitting H2 generation efficiency of CdS in experiments. Here, we constructed WS2/CdS(100) and WS2/CdS(110) heterostructures with smaller mismatches and explored their interaction energy and band offset by first-principles calculations. Our calculation suggests that the WS2/CdS(100) interface with a stronger binding energy is more active in experiments, while the WS2/CdS(110) interface is metastable. The band alignment between CdS and WS2 is highly dependent on the orientation of the interfaces, and WS2/CdS(100) and WS2/CdS(110) belong to type-I and type-II band alignments, respectively. Therefore, a metal electrode and hole scavenger may be essential in experiments to help WS2/CdS(100) efficiently trap electrons, and a suitable substrate and an appropriate growth temperature are also needed to composite the CdS(110) surface to achieve a higher photocatalytic efficiency. In addition, we performed a detailed analysis of the macroscopic average potential and found that the calculated accuracy of potential difference across the heterostructures due to slab thickness is less than 80 meV at WS2/CdS interfaces. In total, our calculations not only explain the physical reasons for the increased efficiency of WS2/CdS, but also provide a detailed guideline for the design of a more efficient synergistic catalyst.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3