Analysis of droplet behavior and breakup mechanisms on wet solid surfaces

Author:

Shiri Yousef1ORCID,Sabour Seyed Mohammad Javad Seyed2ORCID

Affiliation:

1. Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology 1 , Shahrood, Iran

2. Chemical Engineering Department, Tennessee Technological University 2 , Cookeville, Tennessee 38505, USA

Abstract

The behavior and dynamics of droplet spreading are pivotal phenomena that exert a profound influence on numerous scientific disciplines, technological advancements, and natural processes. This study was conducted with the aim to investigate factors influencing the shape and geometry of a liquid droplet on a solid surface using the lattice Boltzmann method (LBM). LBM as a mesoscale numerical fluid simulation has gained increasing popularity among the most favorable numerical methods for simulating multi-phase/multi-component fluid flow in complex geometries. Accordingly, parameters dependency, surface tension, two-phase diagram, and wettability were evaluated in the LBM, and stable and calibrated forms were used for the droplet simulations. Also, an equation was obtained to determine the contact angle in the LBM system with a determination coefficient of 0.988. Then, droplet behavior was examined for its dependency on wettability, interfacial tension, and line tension. The results showed droplets breakup in a certain interfacial tension at high adhesive force. These breakups were due to the force balance in the triple line. They were not monotonic and first decreased and then increased the volume of the droplets.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3