Interaction between electric field and plasma in inductively coupled discharges

Author:

Tao Jun12ORCID,Xiang Nong1ORCID,Hu Yemin1ORCID,Huang Yueheng1ORCID,Gan Chunyun1,Zhou Taotao12ORCID

Affiliation:

1. Institute of Plasma Physics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. University of Science and Technology of China, Hefei 230026, China

Abstract

In regard to collisionless heating in inductively coupled discharges, two approaches have been widely adopted to describe the energy transfer between electrons and the radio frequency field. One approach is based on consistent kinetic theory, by which the resulting field can be expressed as the superposition of a series of plane waves and resonant interactions can happen between electrons and each wave, which might dominate the heating. Another approach is based on the single-particle approach, which assumes that the electric field can be approximated as a spatially exponential function. The energy gained by electrons can then be obtained analytically, and effective energy transfer occurs between the electrons and the field due to nonresonant transit time damping. Although the two approaches demonstrated equivalence in some parameter regimes, it is still unclear how to unite the physical picture in the two models. In this work, test particle simulations have been conducted to show how electrons interact with the electric field expressed as a spatially exponential function and as a sum of a series of plane waves. It is found that as an electric field can be approximated by an exponential function, the resonant interaction between electrons and the field is weak and the nonresonant interaction is dominant, so Vahedi’s model is good enough to describe this interaction. When the imaginary part of the surface impedance becomes important, the electric field cannot be well approximated by an exponential function. It is shown that the resonant interaction dominates the power dissipation of the coupled field.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3