Neural network-based regression for effective parametric study of micro-pin fin heat sinks

Author:

Choi GeunhyeokORCID,Kim Seong JinORCID,Shin SeungwonORCID

Abstract

Micro-pin fin heat sinks are widely used to cool miniature devices. The flow characteristics and cooling performance of these heat sinks are highly dependent on their geometric configuration. Previous studies have focused on optimizing the design so that the pressure drop decreases, while the heat transfer performance is maintained. However, limited numbers of geometries have been explored, mainly considering only homogeneous pin fin arrays. In this study, we propose a neural network-based regression approach called the flow-learned building block (FLBB) and develop an effective parametric study and optimization for micro-pin fin heat sinks including heterogeneous geometries. The prediction capabilities of the FLBB are verified by comparing the predicted results with direct numerical simulation results for various pitch distances, pin sizes, and arrangements at Reynolds numbers from 1 to 100. Furthermore, we demonstrate the applicability of the FLBB to different working fluids, quantified by the Prandtl number (0.71 ≤ Pr ≤ 5.86). Leveraging the reliable and effective prediction capabilities of our neural network-based approach, we perform parametric studies of micro-pin fin heat sinks for working fluids of air and water with the aim of minimizing the pump power and achieving uniform heat transfer along the pin fins.

Funder

Korea Institute of Science and Technology

Korea Institute of Marine Science and Technology promotion

National Research Foundation of Korea

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3