Electric-field induced phase separation and dielectric breakdown in leaky dielectric mixtures: Thermodynamics and kinetics

Author:

Zhang Haodong12ORCID,Wang Fei12ORCID,Nestler Britta123ORCID

Affiliation:

1. Institute of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology 1 , Straße am Forum 7, 76131 Karlsruhe, Germany

2. Institute of Nanotechnology, Karlsruhe Institute of Technology 2 , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

3. Institute of Digital Materials Science, Karlsruhe University of Applied Sciences 3 , Moltkestraße 30, 76133 Karlsruhe, Germany

Abstract

Dielectric materials form the foundation of many electronic devices. When connected to a circuit, these materials undergo changes in microscopic morphology, such as the demixing of dielectric mixtures through phase separation and dielectric breakdown, resulting in the formation of micro-filaments. Consequently, the macroscopic properties and lifespan of the devices are significantly altered. To comprehend the physical mechanisms behind it, we conducted a systematic investigation of the thermodynamics of multicomponent leaky dielectric materials. Beginning with the total energy functional, we derived expressions for the binodal composition, spinodal composition, and critical points. Furthermore, we constructed and validated theoretical phase diagrams for the binary leaky dielectric mixture, incorporating three crucial freedoms: composition, temperature, and electric field strength. In addition, we analyzed the equilibrium interfacial tension impacted by the electric field and studied the dynamic aspects of dielectric materials, examining two morphological transformations: electrostriction and dielectric breakdowns. Our analysis unveiled a connection between these dynamic phenomena and the electric field-induced interfacial instability. The present work is expected to be supportive of future research on multicomponent dielectric materials by offering a comprehensive understanding of their thermodynamic and kinetic behaviors.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz Association

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3