Pore-scale study on the stress jump coefficient in porous composite system

Author:

Abstract

The stress jump coefficient at the fluid/porous interface is a fundamental parameter to study the velocity distribution in a porous composite system. In this paper, a substantial work is carried out to investigate the characteristics of the stress jump coefficient. To this end, the real pore structure of metal foam is constructed using the Weaire–Phelan model, and the macro model and the pore-scale model are presented to simulate a complex three-dimensional porous composite system. Furthermore, a novel method to determine the stress jump coefficient is proposed. The influences of the inlet velocity, the rotation number, the porosity, the free fluid layer thickness, and the flow pattern (the Poiseuille flow, the free boundary flow, and the rotating channel flow) on the stress jump coefficient are studied. The results show that the stress jump coefficient varies with the porosity, which shows that it is dependent on the porous structure. It also found that the stress jump coefficient is independent of the inlet velocity, the rotation number, and the flow pattern. When the thickness of the free fluid layer is large, the stress jump coefficient is also independent of the thickness of the fluid layer.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3