Atmospheric pollution from rockets

Author:

Kokkinakis Ioannis W.1ORCID,Drikakis Dimitris1ORCID

Affiliation:

1. University of Nicosia, Nicosia CY-2417, Cyprus

Abstract

We address the impact of rocket exhaust gases on atmospheric pollution through high-resolution computational fluid dynamics simulations. We have modeled the exhaust gases and developing plume at several altitudes along a typical trajectory of a standard present-day rocket, as a prototypical example of a two-stage rocket to transport people and payloads into Earth's orbit and beyond. The modeled rocket uses RP-1 as the propellant and liquid oxygen as the oxidizer to generate ∼6806 kN of thrust via a total of nine nozzles, matching—as closely as possible based on available data—the specifications to the Thaicom 8 launch mission of the Falcon 9 rocket manufactured by SpaceX. We have used high-order discretization methods, 11th-order accurate, in conjunction with implicit large eddy simulations to model exhaust gas mixing, dispersion, and heat transfer into the atmosphere at altitudes up to 67 km. We show that pollution from rockets should not be underestimated as frequent future rocket launches could have a significant cumulative effect on climate. The production of thermal nitrogen oxides can remain considerable up to altitudes with an ambient atmospheric pressure below but of the same order of magnitude as the nozzles exit pressure. At the same time, the emitted mass of carbon dioxide in the mesosphere is equivalent to that contained in 26 km3 of atmospheric air at the same altitude.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference43 articles.

1. Radiative forcing caused by rocket engine emissions

2. Global atmospheric response to emissions from a proposed reusable space launch system

3. L. David , “ How Much Air Pollution is Produced by Rockets?” ( Scientific America, 2017); available at https://www.scientificamerican.com/article/how-much-air-pollution-is-produced-by-rockets/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3