Extension of finite particle method simulating thermal-viscoelastic flow and fluid–rigid body interactional process in weakly compressible smoothed particle hydrodynamics scheme

Author:

Li Yudong12ORCID,Li Yan1,Joli Pierre2ORCID,Chen Huijian1,Feng Zhiqiang12

Affiliation:

1. Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University 1 , Chengdu, People's Republic of China

2. LMEE Univ-Evry, Université Paris-Saclay 2 , Evry, France

Abstract

In computational non-Newtonian fluid dynamics, heat transfer has obvious effects on motions of viscoelastic fluids, mechanical mechanism of elasticity, and flow regimes. This study suggests an extended numerical scheme of smoothed particle hydrodynamics and finite particle method within density smoothing (SPH_DSFPM), which involves the discretization of smoothed particle hydrodynamics (SPH) and finite particle method (FPM) within density smoothing (DS) in the weakly compressible flow scheme. A corrected particle shifting technique is incorporated to eliminate tensile instability and inhomogeneity near solid boundaries. A corrected dynamic solid coupled boundary is introduced to deal with casting molding within high-pressure operations, which has a good compatibility between virtual particle method and repulsive force model. Numerical results show that the present scheme has the nearly lower relative error (0.5%) than conventional SPH (2.6%) in the case of evolutionary thermal-viscoelastic Poiseuille flow and heat effects have active influences on velocity, pressure variations for viscoelastic fluid flow around periodic circular cylinders. Three different printing modes of moving printers significantly generate into differentiated forming regimes through high-pressure extrusion. Adaptive particle distributions possess robust flow evolutions, by which the shocked jets can be tracked well and the sinking velocities of wedge entering into solutions can be numerically probed well considering different cuspidal biting angles. In the case of macroscopic fluid–rigid body interactions, the statistical degree of deviation on probed forces with experiments is relatively 4.35% and that is 12.5% for SPH. The proposed numerical scheme has a good performance on improved accuracy, convergence, and stability for simulating transient thermal-viscoelastic flows.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3