Turbulence generation in the transitional wake flow behind a sphere

Author:

Niu LinORCID,Dou Hua-ShuORCID,Zhou ChangquanORCID,Xu WenqianORCID

Abstract

Turbulence generation in the transitional flow in the wake behind a sphere is studied with numerical simulations. The filtered Navier–Stokes equation and the large eddy simulation method are employed as the governing equation and the numerical method, respectively. The ΩR̃ vortex identification method is used to trace the evolution of vortices in the wake flow. The energy gradient theory is used to analyze the spike formation in the wake flow. The simulation results show that the vortex structure in the wake flow is the type of hairpin vortices, which is similar to that in a boundary layer flow. Ejection and sweep motions exist around the hairpin vortices. There are two most unstable regions in the wake where turbulence “burst” is first produced, one is near the center of the vortex head and the other is between the two vortex legs. There is a high-pressure zone above the vortex head due to the decrease in the streamwise velocity, and a soliton-like coherent structure exists in this area. The mechanism of turbulence generation in the wake is the discontinuity of the streamwise velocity, which makes the Navier–Stokes equation be singular. This singularity leads to the formation of the “negative spike” in the streamwise velocity. The amplitude of the “negative spike” reaches up to 60% of the incoming velocity, which is close to the situation in a boundary layer flow on a flat plate. It is concluded that the mechanism of turbulence generation in the wake flow is the same as that in the boundary layer flow.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3