Digital signal processing techniques for noise characterization of lasers and optical frequency combs: A tutorial

Author:

Riebesehl Jasper1ORCID,Heebøll Holger R.1ORCID,Razumov Aleksandr1ORCID,Galili Michael1ORCID,Zibar Darko1ORCID

Affiliation:

1. Department of Electrical and Photonics Engineering, Technical University of Denmark , DK-2800 Kgs. Lyngby, Denmark

Abstract

Performing noise characterizations of lasers and optical frequency combs on sampled data offers numerous advantages compared to analog measurement techniques. One of the main advantages is that the measurement setup is greatly simplified. Only a balanced detector followed by an analog-to-digital converter is needed, allowing all the complexity to be moved to the digital domain. Secondly, near-optimal phase estimators are efficiently implementable, providing accurate phase noise estimation in the presence of measurement noise. Finally, joint processing of multiple comb lines is feasible, enabling the computation of the phase noise correlation matrix, which includes all information about the phase noise of the optical frequency comb. This tutorial introduces a framework based on digital signal processing for phase noise characterization of lasers and optical frequency combs. The framework is based on the extended Kalman filter (EKF) and automatic differentiation. The EKF is a near-optimal estimator of the optical phase in the presence of measurement noise, making it very suitable for phase noise measurements. Automatic differentiation is key to efficiently optimizing many parameters entering the EKF framework. More specifically, the combination of EKF and automatic differentiation enables the efficient optimization of phase noise measurement for optical frequency combs with arbitrarily complex noise dynamics that may include many free parameters. We show the framework’s efficacy through simulations and experimental data, showcasing its application across various comb types and in dual-comb measurements, highlighting its accuracy and versatility. Finally, we discuss its capability for digital phase noise compensation, which is highly relevant to free-running dual-comb spectroscopy applications.

Funder

Danmarks Grundforskningsfond

Villum Fonden

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3