Conditional statistics of Reynolds stress in open channel flows with modeled canopies of homogeneous and heterogeneous density

Author:

Li DianORCID,Liu MengyangORCID,Huai WenxinORCID,Liu GuoqiangORCID,Peng ZhenyangORCID,Zhang FupingORCID

Abstract

The flow structures under the effects of heterogeneous canopies have been shown to be significantly different from those under the effects of homogeneous canopies. The purpose of this study is to investigate how the changes in density and density uniformity of the canopy affect the turbulent characteristics of the flow in a partially vegetated channel. A comparative experiment is conducted, including two cases of homogeneous canopy with different densities and one case of heterogeneous canopy consisting of alternating sparse and dense vegetation patches. While the lateral profiles of Reynolds stress, magnitudes of quadrant motions, and high-order moments of velocity fluctuations present a high similarity within the shear layer, variations in both the density and density uniformity of the canopy markedly affect the turbulence at the interface between the canopy and the main channel. The results show that canopy density heterogeneity enhances the momentum exchange at the interface and promotes the penetration of stress-driven flow into the sparse vegetation patch while inhibiting its penetration into the dense vegetation patch. An analogy can be drawn between the canopy flow with sufficient density and the turbulent rough-wall boundary layers based on the turbulent statistics within the shear layer. Furthermore, the effect of increased canopy density on the flow corresponds well to the effect of decreased wall roughness. By using the cumulant expansion method, the assumption of structural similarity present in wall-bounded flows is found to be applicable to the canopy flows considered in this study.

Funder

National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3