Learning effective dynamics from data-driven stochastic systems

Author:

Feng Lingyu12ORCID,Gao Ting12ORCID,Dai Min3,Duan Jinqiao4ORCID

Affiliation:

1. School of Mathematics and Statistics, Huazhong University of Science and Technology 1 , Wuhan 430074, China

2. Center for Mathematical Science, Huazhong University of Science and Technology 2 , Wuhan 430074, China

3. School of Science, Wuhan University of Technology 3 , Wuhan 430070, China

4. College of Science, Great Bay University 4 , Dongguan, Guangdong 523000, China

Abstract

Multiscale stochastic dynamical systems have been widely adopted to a variety of scientific and engineering problems due to their capability of depicting complex phenomena in many real-world applications. This work is devoted to investigating the effective dynamics for slow–fast stochastic dynamical systems. Given observation data on a short-term period satisfying some unknown slow–fast stochastic systems, we propose a novel algorithm, including a neural network called Auto-SDE, to learn an invariant slow manifold. Our approach captures the evolutionary nature of a series of time-dependent autoencoder neural networks with the loss constructed from a discretized stochastic differential equation. Our algorithm is also validated to be accurate, stable, and effective through numerical experiments under various evaluation metrics.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3