Wettability-modulated behavior of polymers under varying degrees of nano-confinement

Author:

Arya Vinay1ORCID,Chaudhuri Abhirup2ORCID,Bakli Chirodeep1ORCID

Affiliation:

1. Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur 1 , Kharagpur 721302, India

2. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur 2 , Kharagpur 721302, India

Abstract

Extreme confinement in nanochannels results in unconventional equilibrium and flow behavior of polymers. The underlying flow physics dictating such paradigms remains far from being understood and more so if the confining substrate is composed of two-dimensional materials, such as graphene. In this study, we conducted systematic molecular dynamics simulations to explore the effect of wettability, confinement, and chain length on polymer flow through graphene-like nanochannels. Altering the wetting properties of these membranes that structurally represent graphene results in substantial changes in the behavior of polymers of disparate chain lengths. Longer hydrocarbon chains (n-dodecane) exhibit negligible wettability-dependent structuring in narrower nanochannels compared to shorter chains (n-hexane) culminating in higher average velocities and interfacial slippage of n-dodecane under less wettable conditions. We demonstrate that the wettability compensation comes from chain entanglement attributed to entropic factors. This study reveals a delicate balance between wettability-dependent enthalpy and chain-length-dependent entropy, resulting in a unique nanoscale flow paradigm, thus not only having far-reaching implications in the superior discernment of polymeric flow in sub-micrometer regimes but also potentially revolutionizing various applications in the oil industry, including innovative oil transport, oil extraction, ion transport polymers, and separation membranes.

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3