Porosity and specific surface area dependence of shock-induced plasticity and melting in open-cell nanoporous Cu

Author:

Shang Min1ORCID,Tian Ze’an23ORCID,Wang Liang4ORCID

Affiliation:

1. College of Science, Hunan Agricultural University 1 , Changsha, Hunan 410128, People’s Republic of China

2. College of Computer Science and Electronic Engineering, Hunan University 2 , Changsha 410082, People’s Republic of China

3. School of Big Data and Information Engineering, Guizhou University 3 , Guiyang 550025, People’s Republic of China

4. The Peac Institute of Multiscale Sciences 4 , Chengdu, Sichuan 610207, People’s Republic of China

Abstract

We systematically study the plasticity and melting behavior in shock loading, as well as their dependence on porosity (ϕ) and specific surface area (γ) for nanoporous copper (NPC), by conducting large-scale non-equilibrium molecular dynamics simulations. During shock compression, the plasticity (i.e., dislocation slips) is dominant at lower impact velocities, while melting is governing at higher impact velocities. With increasing ϕ, both the plasticity and melting undergo the transitions from “heterogeneity” to “homogeneity” along the transverse directions. The increase in γ prompts an apparent heat release and gives rise to the transition from local plasticity to uniform solid disordering at lower impact velocities, while accelerates the melting at higher impact velocities, by converting more surface energy into internal energy. Upon impact, shock-induced pores collapse accelerates the consolidation of NPCs and is controlled by two mechanisms, i.e., the shearing ligament, prompted by plasticity, under low-velocity impact, and the internal micro-jetting facilitated by melting under high-velocity impact.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Education Department of Hunan Province

Double First-Class Construction Project of Hunan Agricultural University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3