A two-dimensional optoelectronic material AgBiP2Se6/MoSe2 heterostructure with excellent carrier transport efficiency

Author:

Zhao Pan1ORCID,Cheng Rui2ORCID,Zhao Lin2ORCID,Yang Hui-Juan2ORCID,Jiang Zhen-Yi1ORCID

Affiliation:

1. Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University 1 , Xi'an 710069, China

2. College of Life Sciences, Northwest University 2 , Xi'an 710069, China

Abstract

The lattice mismatch, defect, and weak interlayer coupling severely constrain the practical application of van der Waals heterojunctions (vdWHs) in the field of optoelectronic devices. Here, we introduced the 2D ferroelectric (FE) material AgBiP2Se6 to construct defect-free, low lattice-mismatched AgBiP2Se6/MoSe2 heterojunctions with different polariton directions (I, II, III). The AgBiP2Se6 layer can provide an excellent FE electric field to enhance the interlayer coupling and stiffness. The larger interlay stiffness reduces the probability of electron–phonon scattering and then results in significant carrier mobility (∼0.5 × 104 cm2 V−1 s−1) for configurations I and II. Phase transition of FE to paraelectric AgBiP2Se6 in the AgBiP2Se6/MoSe2 heterojunctions can be achieved under specific biaxial strain, which can effectively regulate the electronic structure. Applying the strain and electric field can regulate the bandgap and band alignment of configurations I and II. The photoelectric conversion efficiency of configuration I can reach as high as 20.54% under 2% biaxial strain. Furthermore, configuration II holds a nearly free electron state near the Fermi level under an electric field, which can act as a favorable electron transport channel. A design to strengthen interlayer coupling in the FE-based AgBiP2Se6/MoSe2 heterojunction has been proposed, and it can provide a new way to break through the traditional bottleneck in the development of optoelectronic devices.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3