Strong misalignment tolerance wireless power transfer with active adjustment of magnetic shielding

Author:

Dai Zhongyu1ORCID,Li Mengze2,Xu Haoran3,Ji Mengrui1ORCID,Zhang Lei4ORCID

Affiliation:

1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology 1 , Tianjin 300401, China

2. School of International Education, Yanshan University 2 , Qinghuangdao, Hebei 066003, China

3. College of Information Science and Technology, Donghua University 3 , Shanghai 201620, China

4. School of Artificial Intelligence, Hebei University of Technology 4 , Tianjin 300401, China

Abstract

The variation of mutual-inductance is the essential reason for fluctuation of transmission power and efficiency during wireless power transfer (WPT) misalign. To maintain output power stability, current methods, such as primary regulation, secondary conversion, magnetic coupling mechanism (MCM) optimization, and compensation topology design, have not changed the characteristic of mutual-inductance changing with misalignment. A strong misalignment tolerance WPT system based on the influence of high permeability magnetic materials on equivalent electrical parameters of MCM is proposed. When the primary and secondary sides of MCM shift, the relative distance between magnetic shielding and coil (RDMSC) is adjusted to maintain the stability of mutual-inductance. The transmission efficiency and power are not affected by misalignment. Alternatively, RDMSC can be actively adjusted to meet the various needs of diverse loads at different times. Simulations and experiments are conducted. The effectiveness of the proposed scheme that RDMSC is actively adjusted to overcome misalignment is verified. This is a new method based on active adjustment of spatial electromagnetic coupling, which provides a new idea for WPT to overcome the influence of misalignment and maintain stable output.

Funder

State Key Laboratory of Reliability and Intelligence of Electrical Equipment

National Natural Science Foundation of China

S&T Program of Hebei

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3