The electrokinetic energy conversion analysis of viscoelastic Maxwell nanofluids with couple stress in circular microchannels

Author:

Zhang YueORCID,Zhao GuangpuORCID,Hou Yaxin,Zhang JialiORCID,Xue Bo

Abstract

The present study focuses on the unsteady flow of a viscoelastic Maxwell nanofluid with couple stress in a circular microchannel under the combined action of periodic pressure and magnetic field. The Green's function method is applied to the unsteady Cauchy momentum equation to derive the velocity field. We strive to check out the analytical solutions of the current model by validating them with existing results. In addition, the effects of several dimensionless parameters (such as the couple stress parameter γ, the Deborah number De, and the dimensionless frequency ω) on the streaming potential and the electrokinetic energy conversion (EKEC) efficiency of the three waveforms (cosine, square, and triangular) are portrayed via graphical illustrations. Within the range of parameters chosen in this study, the results demonstrate that increasing the value of the Deborah number or decreasing the dimensionless frequency can effectively enhance the streaming potential. The velocity field and EKEC efficiency are improved with increasing couple stress parameters. Furthermore, our investigation is extended to compare the EKEC efficiency for square and triangular waveforms when the couple stress parameters are set to 20 and 40, respectively. The results also indicate that increasing the couple stress parameter significantly improves the EKEC efficiency, particularly in the context of the square waveform. These findings will provide valuable assistance in the design of periodic pressure-driven microfluidic devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia Autonomous Region

Education Department of Inner Mongolia Autonomous Region

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3