Nucleation kinetics model for primary crystallization in Al–Y–Fe metallic glass

Author:

Duan Tianrui1ORCID,Shen Ye1,Imhoff Seth D.2ORCID,Yi Feng3,Voyles Paul M.1ORCID,Perepezko John H.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Wisconsin-Madison 1 , Madison, Wisconsin 53706, USA

2. Materials Science and Technology Sigma Division, Los Alamos National Laboratory 2 , P.O. Box 1663, M.S. G770, Los Alamos, New Mexico 87545, USA

3. Nanolab Technologies, Inc. 3 , Milpitas, California 95035, USA

Abstract

The high density of aluminum nanocrystals (>1021 m−3) that develop during the primary crystallization in Al-based metallic glasses indicates a high nucleation rate (∼1018 m−3 s−1). Several studies have been advanced to account for the primary crystallization behavior, but none have been developed to completely describe the reaction kinetics. Recently, structural analysis by fluctuation electron microscopy has demonstrated the presence of the Al-like medium range order (MRO) regions as a spatial heterogeneity in as-spun Al88Y7Fe5 metallic glass that is representative for the class of Al-based amorphous alloys that develop Al nanocrystals during primary crystallization. From the structural characterization, an MRO seeded nucleation configuration is established, whereby the Al nanocrystals are catalyzed by the MRO core to decrease the nucleation barrier. The MRO seeded nucleation model and the kinetic data from the delay time (τ) measurement provide a full accounting of the evolution of the Al nanocrystal density (Nv) during the primary crystallization under isothermal annealing treatments. Moreover, the calculated values of the steady state nucleation rates (Jss) predicted by the nucleation model agree with the experimental results. Moreover, the model satisfies constraints on the structural, thermodynamic, and kinetic parameters, such as the critical nucleus size, the interface energy, and the volume-free energy driving force that are essential for a fully self-consistent nucleation kinetics analysis. The nucleation kinetics model can be applied more broadly to materials that are characterized by the presence of spatial heterogeneities.

Funder

Office of Naval Research

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3