Electron-phonon interaction, magnetic phase transition, charge density waves, and resistive switching in VS2 and VSe2 revealed by Yanson point-contact spectroscopy

Author:

Bashlakov D. L.1,Kvitnitskaya O. E.12,Aswartham S.2,Shipunov G.2,Harnagea L.3,Efremov D. V.2,Büchner B.24,Naidyuk Yu. G.1

Affiliation:

1. B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine 1 , Kharkiv 61103, Ukraine

2. Leibniz Institute for Solid State and Materials Research 2 , IFW Dresden, Dresden 01069, Germany

3. I-HUB Quantum Technology Foundation, Indian Institute of Science Education and Research (IISER) 3 , Pune 411008, India

4. Institute of Solid State and Materials Physics and Würzburg-Dresden Cluster of Excellence ct.qmat 4 , Technische Universität Dresden, Dresden 01062, Germany

Abstract

VS2 and VSe2 have attracted particular attention among the transition metals dichalcogenides because of their promising physical properties concerning magnetic ordering, charge density wave (CDW), emergent superconductivity, etc., which are very sensitive to stoichiometry and dimensionality reduction. Yanson point-contact (PC) spectroscopic study reveals metallic and nonmetallic states in VS2 PCs, as well as a magnetic phase transition, was detected near 20 K. The rare PC spectra, where the magnetic phase transition was not visible, show a broad maximum of around 20 mV, likely connected with electron-phonon interaction (EPI). The PC spectra of VSe2 demonstrate metallic behavior, which allowed us to detect features associated with EPI and CDW transition. The Kondo effect appeared for both compounds, apparently due to interlayer vanadium ions. Besides, the resistive switching was observed in PCs on VSe2 between a low resistive, mainly metallic-type state, and a high resistive nonmetallic-type state by applying bias voltage (about 0.4 V). Reverse switching occurs by applying a voltage of opposite polarity (about 0.4 V). The reason may be the alteration of stoichiometry in the PC core due to the displacement of V ions to interlayer under a high electric field. The observed resistive switching characterizes VSe2 as a potential material, e.g., for non-volatile resistive RAM, neuromorphic engineering, and other nanoelectronic applications. Per contra, VS2 attracts attention as a rare layered van der Waals compound with magnetic transition.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3