1. X. Zhang, Y. Li, W. Li, K. Guo, and Y. Shao, “Personalized federated learning via variational bayesian inference,” in International Conference on Machine Learning (PMLR, 2022) pp. 26293–26310.
2. H.-Y. Chen, C.-H. Tu, Z. Li, H.-W. Shen, and W.-L. Chao, “On pre-training for federated learning,” arXiv preprint arXiv:2206.11488 (2022).
3. X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189 (2019).
4. A review of applications in federated learning
5. W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile edge networks: A comprehensive survey,” (2020), arXiv:1909.11875 [cs, eess].