Ionic–electronic dynamics in an electrochemical gate stack toward high-speed artificial synapses

Author:

Levit Or1ORCID,Ber Emanuel1ORCID,Dahan Mor M.1ORCID,Keller Yair1,Yalon Eilam1ORCID

Affiliation:

1. Viterbi Faculty of Electrical Engineering, Technion—Israel Institute of Technology , Haifa 32000, Israel

Abstract

Despite their great synaptic potential, the trade-off between programming speed and energy consumption of electrochemical random-access memory (ECRAM) devices are major hindrance to their incorporation into practical applications. In this work, we experimentally study the main limiting factor for high-speed programming of ECRAMs, the ionic current in the gate stack. We use two-terminal structures composed of LiCoO2/Li3PO4/amorphous-Si to represent the ECRAM gate stack (reservoir/electrolyte/channel). We perform electrical characterization including impedance spectroscopy (small-signal) and large-signal transient measurements across nine orders of magnitude in the time domain. We find that at the sub-microseconds range, the current is governed by the energy barrier for Li+ ions at the electrolyte interfaces. After a period of ∼1 μs, ionic migration through the ∼80 nm electrolyte layer dictates the current. At ∼50 μs, the ionic double layer at the interface is fully charged and the gate current drops by several orders of magnitude, indicating that the Li3PO4/Si interface is saturated, and the measured current is dominated by the electronic leakage component. Furthermore, we evaluate ECRAM performance under various pulse parameters. Our predictions show that an aggressively scaled (atomically thin) channel having a low carrier density of ∼1011 cm−2 can be programmed at ∼nanosecond using a gate current of ∼100 A/cm2.

Funder

Israel Science Foundation

Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3