Analysis of pressure oscillations and wall heat flux due to hydrogen auto-ignition in a confined domain

Author:

Dou Xinbei1ORCID,Talei Mohsen1ORCID,Yang Yi1ORCID

Affiliation:

1. Department of Mechanical Engineering, The University of Melbourne, Parkville, Melbourne 3010, Victoria, Australia

Abstract

This study investigates the impact of the near-wall temperature gradient on hydrogen auto-ignition characteristics using one-dimensional (1D) fully resolved simulations. Ten cases are simulated, one featuring normal combustion and the other nine simulating auto-ignitive combustion with different initial pressures, equivalence ratios, and near-wall temperature gradients. The simulations show that the near-wall temperature gradient greatly affects the onset and intensity of the auto-ignition event. For cases with the initial conditions of 833.3 K and 15 bar, a small near-wall temperature gradient delays the timing of auto-ignition and places the auto-ignition kernel further away from the wall, facilitating deflagration-to-detonation transition of the auto-ignitive flame. This leads to a large increase in pressure oscillations within the domain and heat flux to the wall. When the initial conditions are changed to 900 K and 20 bar, the magnitude of the near-wall temperature gradient also affects the number of auto-ignition events, leading to a significant impact on the wall heat flux. The results suggest that an accurate modeling of the near-wall temperature gradient is necessary for the simulations of hydrogen end-gas auto-ignition. This requires special considerations in the near-wall region and a careful selection of the wall heat transfer model in Computational Fluid Dynamics (CFD) tools, such as Reynolds-Averaged Navier–Stokes (RANS) and Large-Eddy Simulation (LES).

Funder

Australia Research Council

China Scholarship Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3