Power spectral estimate for discrete data

Author:

Marwan Norbert12ORCID,Braun Tobias1ORCID

Affiliation:

1. Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association 1 , Telegrafenberg A31, 14473 Potsdam, Germany

2. University of Potsdam, Institute of Geoscience 2 , Karl-Liebknecht-Straße 32, 14476 Potsdam, Germany

Abstract

The identification of cycles in periodic signals is a ubiquitous problem in time series analysis. Many real-world datasets only record a signal as a series of discrete events or symbols. In some cases, only a sequence of (non-equidistant) times can be assessed. Many of these signals are furthermore corrupted by noise and offer a limited number of samples, e.g., cardiac signals, astronomical light curves, stock market data, or extreme weather events. We propose a novel method that provides a power spectral estimate for discrete data. The edit distance is a distance measure that allows us to quantify similarities between non-equidistant event sequences of unequal lengths. However, its potential to quantify the frequency content of discrete signals has so far remained unexplored. We define a measure of serial dependence based on the edit distance, which can be transformed into a power spectral estimate (EDSPEC), analogous to the Wiener–Khinchin theorem for continuous signals. The proposed method is applied to a variety of discrete paradigmatic signals representing random, correlated, chaotic, and periodic occurrences of events. It is effective at detecting periodic cycles even in the presence of noise and for short event series. Finally, we apply the EDSPEC method to a novel catalog of European atmospheric rivers (ARs). ARs are narrow filaments of extensive water vapor transport in the lower troposphere and can cause hazardous extreme precipitation events. Using the EDSPEC method, we conduct the first spectral analysis of European ARs, uncovering seasonal and multi-annual cycles along different spatial domains. The proposed method opens new research avenues in studying of periodic discrete signals in complex real-world systems.

Funder

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3