Affiliation:
1. School of Physics, Hangzhou Normal University 1 , Hangzhou 311121, China
2. School of Physics, Nanjing University 2 , Nanjing 210093, China
Abstract
We propose a simple method to realize a hybrid controlled–controlled-Z (CCZ) gate with two photonic qubits simultaneously controlling a superconducting (SC) target qubit, by employing two microwave cavities coupled to a SC ququart (a four-level quantum system). In this proposal, each control qubit is a photonic qubit, which is encoded by two arbitrary orthogonal eigenstates (with eigenvalues ±1, respectively) of the photon-number parity operator. Since the two arbitrary encoding states can take various quantum states, this proposal can be applied to realize the hybrid CCZ gate, for which the two control photonic qubits can have various encodings. The gate realization is quite simple because only a basic operation is needed. During the gate operation, the higher energy intermediate levels of the ququart are not occupied, and, thus, decoherence from these levels is greatly suppressed. We further discuss how to apply this gate to generate a hybrid Greenberger–Horne–Zeilinger (GHZ) entangled state of a SC qubit and two photonic qubits, which takes a general form. As an example, our numerical simulation demonstrates that high-fidelity generation of a cat–cat–spin hybrid GHZ state is feasible within current circuit QED technology. This proposal is quite general, which can be applied to realize the hybrid CCZ gate as well as to prepare various hybrid GHZ states of a matter qubit and two photonic qubits in other physical systems, such as two microwave or optical cavities coupled to a four-level natural or artificial atom.
Funder
National Natural Science Foundation of China
Jiangxi Natural Science Foundation
Key-Area Research and Development Program of GuangDong Province
JiangSu Funding Program for Excellent Postdoctoral Talent
Innovation Program for Quantum Science and Technology
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献