Affiliation:
1. Sempione Sim SPA 1 , Via Maurizio Gonzaga 2, 20123 Milano, Italy
2. Department of Economics, Management and Statistics, University of Milano-Bicocca 2 , U6 Building, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
3. Department of Mathematics and its Applications, University of Milano-Bicocca 3 , U5 Building, Via R. Cozzi 55, 20125 Milano, Italy
Abstract
In the work, we prove the presence of chaotic dynamics, for suitable values of the model parameters, for the discrete-time system, composed of two coupled logistic maps, as formulated in Yousefi et al. [Discrete Dyn. Nat. Soc. 5, 161–177 (2000)], which describes two interdependent economies, characterized by two competitive markets each, with a demand link between them. In particular, we rely on the SAP (Stretching Along the Paths) method, based on a stretching relation for maps defined on sets homeomorphic to the unit square and expanding the paths along one direction. Such technique is topological in nature and allows to establish the existence of a semiconjugacy between the considered dynamical system and the Bernoulli shift, so that the main features related to the chaos of the latter (e.g., the positivity of the topological entropy) are transmitted to the former. In more detail, we apply the SAP method both to the first and to the second iterate of the map associated with our system, and we show how dealing with the second iterate, although being more demanding in terms of computations, allows for a larger freedom in the sign and in the variation range of the linking parameters for which chaos emerges. Moreover, the latter choice guarantees a good agreement with the numerical simulations, which highlight the presence of a chaotic attractor under the conditions derived for the applicability of the SAP technique to the second iterate of the map.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mechanism of multistability in chaotic maps;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-08-01