Study on the blade squealer tip affecting tip leakage flow and performance of a multiphase pump

Author:

Tang Wanqi1ORCID,Shi Guangtai1ORCID,Xiao Yexiang2ORCID,Huang Zongliu1ORCID,Li Wei3,Chen Wenxiu3

Affiliation:

1. Key Laboratory of Fluid and Power Machinery, Xihua University, Ministry of Education 1 , Chengdu 610039, China

2. State Key Laboratory of Hydroscience and Department of Energy and Power Engineering, Tsinghua University 2 , Beijing 100084, China

3. Sichuan Aerospace Fenghuo Servo Control Technology Co. 3 , Chengdu 611130, China

Abstract

Tip clearance is the distance required between the blade tip and the pump body wall of an impeller in a helicon-axial multiphase pump, which tends to induce tip leakage flow. The tip leakage vortex formed by the interaction of tip leakage flow with the mainstream can seriously affect the performance of the multiphase pump. To minimize the adverse effects of tip leakage flow in the multiphase pump, a method to design a squealer tip on the impeller blade is proposed in this paper. The effect of the squealer tip on external characteristics, tip clearance flow characteristics, and energy dissipation of the multiphase pump is analyzed. Research results indicate that the blade squealer tip can effectively improve hydraulic efficiency of the multiphase pump. At the optimal efficiency point, the head and hydraulic efficiency of the multiphase pump with a squealer tip increased by 3.62% and 4.15%, respectively, compared with the original model. The influence of tip leakage flow in the axial rear half passage of the multiphase pump impeller is far greater than that in the axial forward half passage, especially on the back position in the middle of the impeller passage. The squealer tip can restrain the reverse of leakage flow from the pressure side to the suction side of the impeller blade, and the clearance leakage flow of the model with a squealer tip is smaller than that of the original model. The squealer tip on blade will reduce the energy dissipation caused by unsteady flow in the mainstream. The research results in this paper can provide theoretical support for effectively restraining the influence of the tip leakage vortex on the mainstream of the helicon-axial multiphase pump and contribute to engineering practice value of improving the performance of the multiphase pump.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering

Key Scientific Research Fund of Xihua University of China

Central Leading Place Scientific and Technological Development Funds for Surface Project

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3