Data-driven surrogate modelling of multistage Taylor cone–jet dynamics

Author:

Cândido Sílvio1ORCID,Páscoa José C.1ORCID

Affiliation:

1. Department of Electromechanical Engineering, University of Beira Interior, C-MAST , 6200-001 Covilhã, Portugal

Abstract

The Taylor cone jet is an electrohydrodynamic flow typically induced by applying an external electric field to a liquid within a capillary, commonly utilized in colloidal thrusters. This flow generation involves a complex multiphase and multiphysics process, with stability contingent upon specific operational parameters. The operational window is intrinsically linked to flow rate and applied electric voltage magnitude. High voltages can induce atomization instabilities, resulting in the production of an electrospray. Our study presents initially a numerical investigation into the atomization process of a Taylor cone jet using computational fluid dynamics. Implemented within OpenFOAM, our numerical model utilizes a volume-of-fluid approach coupled with Maxwell's equations to incorporate electric body forces into the incompressible Navier–Stokes equations. We employ the leaky-dielectric model, subjecting the interface between phases to hydrodynamic surface tension and electric stress (Maxwell stress). With this model, we studied the droplet breakup of a heptane liquid jet, for a range of operation of 1.53–7.0 nL s−1 and 2.4–4.5 kV of extraction. First, the developed high-fidelity numerical solution is studied for the jet breakup and acceleration of the droplets. Second, we integrate a machine learning model capable of extending the parametric windows of operation. Additionally, we explore the influence of extractor and acceleration plates on colloidal propulsion systems. This work offers a numerical exploration of the Taylor cone–jet transition and droplet acceleration using novel, numerically accurate approaches. Subsequently, we integrate machine learning models, specifically an artificial neural network and a one-dimensional convolutional neural network, to predict the jet's performance under conditions not previously evaluated by computationally heavy numerical models. Notably, we demonstrate that the convolutional neural network outperforms the artificial neural network for this type of application data, achieving a 2% droplet size prediction accuracy.

Funder

GreenAuto: Green Innovation for Automotive Industry

Fundação para a Ciência e a Tecnologia

Centre for Mechanical and Aerospace Science and Technologies, University of Beira Interior

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3