Decoupled identification and compensation of nonlinear hysteresis cascading with linear dynamic in a moving magnet voice coil actuator

Author:

Huang Xiaolu123ORCID,Zhang Chi12ORCID,Li Rong12ORCID,Chen Jinhua12ORCID,Chen Si-lu12ORCID,Yang Guilin12ORCID

Affiliation:

1. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China

2. Zhejiang Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo, Zhejiang 315201, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The moving magnet voice coil actuator (MMVCA) is a promising choice for the long stroke nanopositioning stage with the advantage of low moving mass. However, the hysteresis observed in MMVCA limits further improvement on tracking performance. The hysteresis is cascading with the linear dynamic of the positioning stage, which makes common hysteresis identification inapplicable. In this paper, the cause and influence of hysteresis in MMVCA are analyzed, which reveal that the magnetic hysteresis leads to a hysteresis of force and causes motion accuracy to degrade. A modified rate-dependent Prandtl–Ishlinskii (P–I) model is proposed to describe the hysteresis in MMVCA. The decoupled method is implemented to identify the parameters of the linear dynamic model and nonlinear hysteresis model. The experimental results validate the feasibility of the proposed P–I model. Based on the hysteresis compensation, the peak-to-peak tracking errors are reduced by 30% and the root-mean-square (rms) tracking errors are decreased by 41% on average for the trajectories with amplitudes from 1 to 3 mm and frequencies from 1 to 5 Hz.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3