The triple decomposition of the velocity gradient tensor as a standardized real Schur form

Author:

Kronborg Joel1ORCID,Hoffman Johan1ORCID

Affiliation:

1. KTH Royal Institute of Technology , 10044 Stockholm, Sweden

Abstract

The triple decomposition of a velocity gradient tensor provides an analysis tool in fluid mechanics by which the flow can be split into a sum of irrotational straining flow, shear flow, and rigid body rotational flow. In 2007, Kolář formulated an optimization problem to compute the triple decomposition [V. Kolář, “Vortex identification: New requirements and limitations,” Int. J. Heat Fluid Flow 28, 638–652 (2007)], and more recently, the triple decomposition has been connected to the Schur form of the associated matrix. We show that the standardized real Schur form, which can be computed by state of the art linear algebra routines, is a solution to the optimization problem posed by Kolář. We also demonstrate why using the standardized variant of the real Schur form makes computation of the triple decomposition more efficient. Furthermore, we illustrate why different structures of the real Schur form correspond to different alignments of the coordinate system with the fluid flow and may, therefore, lead to differences in the resulting triple decomposition. Based on these results, we propose a new, simplified algorithm for computing the triple decomposition, which guarantees consistent results.

Funder

Vetenskapsrådet

Swedish National Infrastructure for Computing

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3