Affiliation:
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology 1 , Tianjin 300130, China
2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology 2 , Tianjin 300130, China
Abstract
In this paper, a computational model characterizing the preparation of metallic nanoparticles by electrically exploding wires from the onset of current flowing through the wire to the final moment of nanoparticle formation in a gaseous environment is constructed. The computational model consists of a 1D magnetohydrodynamic model, a simplified magnetohydrodynamic model with two-temperature approximation, and a set of general dynamic equations based on the nodal approach, corresponding to the phase transition stage, plasma evolution stage, and nanoparticle growth stage, respectively. The numerical investigation on the formation of nanoparticles is performed with “cold-start” conditions. The computational predictions for the dependence of nanoparticle size on proportion under argon gas pressure of 10 kPa demonstrate that the nanoparticles of 21 nm in diameter account for the maximum proportion of 4.3%. It coincides with the experimental measurements for nanoparticles of 19 nm in diameter with the maximum proportion of 3.5%. The computational model is employed to reveal the influence of ambient gas pressures on the process of nanoparticle formation. The variation trends for parameters of exploding products, cooling rate, and nanoparticle diameter with the largest proportion on ambient gas pressures are discussed. The size distribution of nanoparticles under different argon gas pressures matches relatively well with relevant experimental data. This computational model bridges the gap between the electrically exploding wires and the growth of nanoparticles, providing theoretical support for the regulation and control technology in nanoparticle synthesization by electrically exploding wires.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
State Key Laboratory of Reliability and Intelligence of Electrical Equipment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献