Affiliation:
1. Research Center for Complexity Sciences, Hangzhou Normal University , Hangzhou 311121, Zhejiang, China
Abstract
The failures of individual agents can significantly impact the functionality of associated groups in interconnected systems. To reveal these impacts, we develop a threshold model to investigate cascading failures in double-layer hypergraphs with interlayer interdependence. We hypothesize that a hyperedge disintegrates when the proportion of failed nodes within it exceeds a threshold. Due to the interdependence between a node and its replica in the other layer, the disintegrations of these hyperedges could trigger a cascade of events, leading to an iterative collapse across these two layers. We find that double-layer hypergraphs undergo abrupt, discontinuous first-order phase transitions during systemic collapse regardless of the specific threshold value. Additionally, the connectivity measured by average cardinality and hyperdegree plays a crucial role in shaping system robustness. A higher average hyperdegree always strengthens system robustness. However, the relationship between system robustness and average cardinality exhibits non-monotonic behaviors. Specifically, both excessively small and large average cardinalities undermine system robustness. Furthermore, a higher threshold value can boost the system’s robustness. In summary, our study provides valuable insights into cascading failure dynamics in double-layer hypergraphs and has practical implications for enhancing the robustness of complex interdependent systems across domains.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献