Theoretical modeling of defect diffusion in wide bandgap semiconductors

Author:

Knausgård Hommedal Ylva1ORCID,Etzelmüller Bathen Marianne1ORCID,Mari Reinertsen Vilde1ORCID,Magnus Johansen Klaus1ORCID,Vines Lasse1ORCID,Kalmann Frodason Ymir1ORCID

Affiliation:

1. Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo , 0316 Oslo, Norway

Abstract

Since the 1940s, it has been known that diffusion in crystalline solids occurs due to lattice defects. The diffusion of defects can have a great impact on the processing and heat treatment of materials as the microstructural changes caused by diffusion can influence the material qualities and properties. It is, therefore, vital to be able to control the diffusion. This implies that we need a deep understanding of the interactions between impurities, matrix atoms, and intrinsic defects. The role of density functional theory (DFT) calculations in solid-state diffusion studies has become considerable. The main parameters to obtain in defect diffusion studies with DFT are formation energies, binding energies, and migration barriers. In particular, the utilization of the nudged elastic band and the dimer methods has improved the accuracy of these parameters. In systematic diffusion studies, the combination of experimentally obtained results and theoretical predictions can reveal information about the atomic diffusion processes. The combination of the theoretical predictions and the experimental results gives a unique opportunity to compare parameters found from the different methods and gain knowledge about atomic migration. In this Perspective paper, we present case studies on defect diffusion in wide bandgap semiconductors. The case studies cover examples from the three diffusion models: free diffusion, trap-limited diffusion, and reaction diffusion. We focus on the role of DFT in these studies combined with results obtained with the experimental techniques secondary ion mass spectrometry and deep-level transient spectroscopy combined with diffusion simulations.

Funder

Norges Forskningsråd

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3