Enhanced collisionless laser absorption in strongly magnetized plasmas

Author:

Manzo Lili1ORCID,Edwards Matthew R.12ORCID,Shi Yuan1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory, Livermore, California 94551, USA

2. Stanford University, Stanford, California 94305, USA

Abstract

Strongly magnetizing a plasma adds a range of waves that do not exist in unmagnetized plasmas and enlarges the laser-plasma interaction (LPI) landscape. In this paper, we use particle-in-cell simulations to investigate strongly magnetized LPI in one dimension under conditions relevant for magneto-inertial fusion experiments, focusing on a regime where the electron-cyclotron frequency is greater than the plasma frequency and the magnetic field is at an oblique angle with respect to the wave vectors. We show that when electron-cyclotron-like hybrid wave frequency is about half the laser frequency, the laser light resonantly decays to magnetized plasma waves via primary and secondary instabilities with large growth rates. These distinct magnetic-field-controlled instabilities, which we collectively call two-magnon decays, are analogous to two-plasmon decays in unmagnetized plasmas. Since additional phase mixing mechanisms are introduced by the oblique magnetic field, collisionless damping of large-amplitude magnetized waves substantially broadens the electron distribution function, especially along the direction of the magnetic field. During this process, energy is transferred efficiently from the laser to plasma waves and then to electrons, leading to a large overall absorptivity when strong resonances are present. The enhanced laser energy absorption may explain hotter-than-expected temperatures observed in magnetized laser implosion experiments and may also be exploited to develop more efficient laser-driven x-ray sources.

Funder

Lawrence Livermore National Laboratory

National Nuclear Security Administration

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3