Corrosion detection of reinforced concrete structures based on microwave nondestructive technique

Author:

Li Peng12,Yu Honglin12ORCID,Li Zijin12,Zhang Boming12,Wu Tian12,Pu Ziheng12,Wang Shenhua3

Affiliation:

1. Hubei Provincial Engineering Technology Research Center for Power Transmission Line, China Three Gorges University 1 , Yichang 443002, China

2. College of Electrical Engineering and New Energy, China Three Gorges University 2 , Yichang 443002, China

3. State Grid Zhejiang Wuyi Electric Power Supply Company 3 , Jinhua 321200, China

Abstract

The corrosion of rebars will change the mechanical properties of the reinforced concrete structure, leading to the decline in the structural strength, which seriously threatens the safety and stability of buildings and power equipment foundations. Hence, it is of great significance to detect the internal corrosion of reinforced concrete structures. In this paper, a nondestructive detection method for detecting the corrosion in reinforced concrete structures based on microwave was proposed, and the corrosion state of rebar can be evaluated by the change of microwave information. Compared with other detection methods, microwave nondestructive detection has the advantages of low energy consumption, strong penetration, no contact, and small equipment volume and weight. In order to verify the effectiveness of the method, a microwave nondestructive detection simulation test platform was built and reinforced concrete test models with different corrosion lengths and depths were made. The influences of concrete parameters, the microwave frequency, and the lifting distance of the waveguide were analyzed. The frequency sweeping and moving scanning detection methods of the waveguide were carried out for the test models with different corrosion defects, and the changes of microwave S-parameters under different corrosion defects were obtained. The results show that when the waveguide is placed horizontally by the frequency sweeping detection method, the corrosion length detection effect of rebar is better. When the waveguide is placed vertically by the frequency sweeping detection method, the corrosion depth can be identified and the amplitude of transmission coefficient increases with the increase in the corrosion depth. The corrosion length of rebars can be identified quantitatively by the moving scanning detection method of the waveguide.

Funder

State Grid Zhejiang Electric Power Co. Ltd. Technology Project

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3