Design, fabrication, and characterization of a high-sensitivity integrated quartz vibrating beam accelerometer

Author:

Li Cun1ORCID,Xue Hong1ORCID,Zhao Yulong1ORCID

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University , Xi’an, Shaanxi 710049, People’s Republic of China

Abstract

This paper describes the design, fabrication, and characterization of a quartz vibrating beam accelerometer consisting of a metal spring–mass and quartz double-ended tuning forks (DETFs). In this approach, the inertial force of the proof mass pulls or compresses the DETFs, affecting their resonance frequency and, thus, enabling the quasi-digital measurement of acceleration. An isolation structure was specifically designed to prevent the external interference stress from transforming into the DETFs and to decrease the DETFs’ thermal stress as the ambient temperature changes. A stress-free and high-precision wire-cut electrical discharge machining process was introduced to solve the fabrication problem of flexible hinges, and a femtosecond laser was used to release the proof mass, comprehensively considering the compatibility of the fabrication process and structural design. The oscillation excitation and detection of the DETFs were analyzed, and the DETFs were fabricated using a micro-electromechanical systems process. Sensor dimensions were optimized to improve sensor sensitivity. An accelerometer prototype was fabricated, and its performance was characterized. The tested scale factor was 157.28 Hz/g, and its stability was 16.54 ppm. The bias stability and 1 g stability at 1 h were 18 and 7.84 µg, respectively. The experimental results validated the feasibility of the sensor design.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi Province

National Key Research and Development Program of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3