Adjustable stereo path design method based on pin-sculpture acoustic topological insulator with Z-dislocation defect immunity

Author:

Liu Peng1ORCID,Li Hangyu2ORCID,Lv Zengyao3ORCID,Pei Yongmao2ORCID

Affiliation:

1. Locomotive & Car Research Institute, China Academy of Railway Sciences Corporation Limited 1 , Beijing 100081, People's Republic of China

2. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University 2 , Beijing 100871, People's Republic of China

3. Department of Civil and Environmental Engineering, Northwestern University 3 , Evanston, Illinois 60208, USA

Abstract

The field of topological protected wave engineering, inspired by quantum mechanics, has generated significant interest. Acoustic analogs of electronic topological insulators provide new opportunities for manipulating sound propagation with unconventional acoustic edge modes that are immune to backscattering. Numerous reports have been published on the design of two-dimensional acoustic topological insulators (ATIs). However, the sound path of a two-dimensional design is simple, and its ability to control sound waves is limited. On the other hand, the design of 3D ATIs is relatively complex, making it difficult to manufacture and limiting its versatility. Based on the design idea of the 2D ATIs, inspired by the art named 3D pin-sculpture, an adjustable structure of a finite size consisting of spindle-shaped units with a variable cross section is designed to realize flexible path transformation. Furthermore, unlike two-dimensional structural defects, such as cavities and disorder, the analysis of vertical dislocation defects in finite-sized structures allows for the design of local sound propagation along the z-direction, providing a concept for constructing a stereo path. The designed structure also serves two functions: acoustic switch and delay. This idea offers an alternative approach to designing complex sound transmission paths.

Funder

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park

China Academy of Railway Sciences

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3