Analytical model for viscous and elastic Rayleigh–Taylor instabilities in convergent geometries at static interfaces

Author:

Gou J. N.1,Zeng R. H.2,Wang C.1,Sun Y. B.1ORCID

Affiliation:

1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

2. Fujian Key Laboratory of Wind Disasters and Wind Engineering, Xiamen University of Technology, Xiamen 361024, China

Abstract

Great attention has been attracted to study the viscous and elastic Rayleigh–Taylor instability in convergent geometries, especially for their low mode asymmetries that behave distinctively from the planar counterparts. However, most analyses have focused on the instability at static interfaces that excludes the studies of the Bell–Plesset effects and the elastic–plastic transition since they involve too complex mathematics. Herein, we perform detailed analyses on the dispersion relations by applying the viscous and elastic potential flow method to obtain their approximate growth rates compared with the exact ones to demonstrate: (i) The approximate growth rates based on potential flow method generally coincide with the exact ones. (ii) An alternative expression is proposed to overcome the discrepancy for the low mode asymmetries at fluid/fluid interface. (iii) Extra care must be taken in solids since the maximum discrepancies occur at the n = 1 mode and at the mode proximate to the cutoff. This analytical method of great simplicity is essential to describe the dynamic interface by including the overall motion of the interface based on the static construction, while the exact analysis involves too complex mathematics to be extended by including the Bell–Plesset effects and the elastic–plastic properties. To sum up, the approximate analytical dispersion relations derived in convergent geometries, have the potential for dealing with dynamic interfaces where Bell–Plesset effects are combined with elastic–plastic transition.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3