Impact of gigahertz and terahertz transport regimes on spin propagation and conversion in the antiferromagnet IrMn

Author:

Gueckstock O.12ORCID,Seeger R. L.3ORCID,Seifert T. S.12ORCID,Auffret S.3,Gambarelli S.4,Kirchhof J. N.1ORCID,Bolotin K. I.1,Baltz V.3ORCID,Kampfrath T.12ORCID,Nádvorník L.5ORCID

Affiliation:

1. Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany

2. Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany

3. Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, F-38000 Grenoble, France

4. Univ. Grenoble Alpes, CNRS, CEA, SYMMES, F-38000 Grenoble, France

5. Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic

Abstract

Control over spin transport in antiferromagnetic systems is essential for future spintronic applications with operational speeds extending to ultrafast time scales. Here, we study the transition from the gigahertz (GHz) to terahertz (THz) regime of spin transport and spin-to-charge current conversion (S2C) in the prototypical antiferromagnet IrMn by employing spin pumping and THz spectroscopy techniques. We reveal a factor of 4 shorter characteristic propagation lengths of the spin current at THz frequencies (∼0.5 nm) as compared to GHz experiments (∼2 nm). This observation may be attributed to different transport regimes. The conclusion is supported by extraction of sub-picosecond temporal dynamics of the THz spin current. We identify no relevant impact of the magnetic order parameter on S2C signals and no scalable magnonic transport in THz experiments. A significant role of the S2C originating from interfaces between IrMn and magnetic or non-magnetic metals is observed, which is much more pronounced in the THz regime and opens the door for optimization of the spin control at ultrafast time scales.

Funder

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Agence Nationale de la Recherche

CEA

Czech Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference62 articles.

1. Antiferromagnetic spintronics

2. L. Smejkal , J. Sinova , and T. Jungwirth , arXiv:2105.05820 (2021).

3. H. Reichlova , R. Lopes Seeger , R. Gonzalez-Hernandez , I. Kounta , R. Schlitz , D. Kriegner , P. Ritzinger , M. Lammel , M. Leiviska , V. Petricek , P. Dolezal , E. Schmoranzerova , A. ın Badura , A. Thomas , V. Baltz , L. Michez , J. Sinova , S. T. B. Goennenwein , T. Jungwirth , and L. Smejkal , arXiv:2012.15651 (2021).

4. Antiferromagnetic magnon pseudospin: Dynamics and diffusive transport

5. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3