Secondary electron emission and vacuum electronics

Author:

Yater J. E.1ORCID

Affiliation:

1. Naval Research Laboratory , 4555 Overlook Ave. SW, Washington, DC 20375, USA

Abstract

Secondary electron emission serves as the foundation for a broad range of vacuum electronic devices and instrumentation, from particle detectors and multipliers to high-power amplifiers. While secondary yields of at least 3–4 are required in practical applications, the emitter stability can be compromised by surface dynamics during operation. As a result, the range of practical emitter materials is limited. The development of new emitter materials with high yield and robust operation would advance the state-of-the-art and enable new device concepts and applications. In this Perspective article, I first present an analysis of the secondary emission process, with an emphasis on the influence of material properties. From this analysis, ultra-wide bandgap (UWBG) semiconductors and oxides emerge as superior emitter candidates owing to exceptional surface and transport properties that enable a very high yield of low-energy electrons with narrow energy spread. Importantly, exciting advances are being made in the development of promising UWBG semiconductors such as diamond, cubic boron nitride (c-BN), and aluminum nitride (AlN), as well as UWBG oxides with improved conductivity and crystallinity. These advances are enabled by epitaxial growth techniques that provide control over the electronic properties critical to secondary electron emission, while advanced theoretical tools provide guidance to optimize these properties. Presently, H-terminated diamond offers the greatest opportunity because of its thermally stable negative electron affinity (NEA). In fact, an electron amplifier under development exploits the high yield from this NEA surface, while more robust NEA diamond surfaces are demonstrated with potential for high yields in a range of device applications. Although c-BN and AlN are less mature, they provide opportunities to design novel heterostructures that can enhance the yield further.

Funder

Office of Naval Research

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3