Quasi-elastic neutron scattering reveals the relationship between the dynamical behavior of phospholipid headgroups and hydration water

Author:

Rahman Md. Khalidur12ORCID,Yamada Takeshi3ORCID,Yamada Norifumi L.12ORCID,Hishida Mafumi4ORCID,Higuchi YujiORCID,Seto Hideki12ORCID

Affiliation:

1. Department of Materials Structure Science, The Graduate University for Advanced Studies (SOKENDAI) 1 , 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

2. Institute of Materials Structure Science/J-PARC Center, High Energy Accelerator Research Organization (KEK) 2 , Tokai, Naka, Ibaraki 319-1106, Japan

3. Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS) 3 , Tokai, Naka, Ibaraki 319-1106, Japan

4. Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba 4 , Tsukuba, Ibaraki 305-8571, Japan

Abstract

The dynamics of hydration water (HW) in 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) was investigated by means of quasi-elastic neutron scattering (QENS) and compared with those observed in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The headgroup dynamics of DMPE was investigated using a mixture of tail-deuterated DMPE and D2O, and the QENS profiles were interpreted as consisting of three modes. The fast mode comprised the rotation of hydrogen atoms in –NH3+ and –CH2– groups in the headgroup of DMPE, the medium-speed mode comprised fluctuations in the entire DMPE molecule, and the slow mode comprised fluctuations in the membrane. These interpretations were confirmed using molecular dynamics (MD) simulations. The HW dynamics analysis was performed on a tail-deuterated DMPE and H2O mixture. The QENS profiles were analyzed in terms of three modes: (1) a slow mode, identified as loosely bound HW in the DMPC membrane; (2) a medium-speed mode similar to free HW in the DMPC membrane; and (3) a fast mode, identified as rotational motion. The relaxation time for the fast mode was approximately six times shorter than that of rotational water in DMPC, consistent with the results of terahertz time-domain spectroscopy. The activation energy of medium-speed HW in DMPE differed from that of free HW in DMPC, suggesting the presence of different hydration states or hydrogen-bonded networks around the phosphocholine and phosphoethanolamine headgroups.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Spectroscopy,Condensed Matter Physics,Instrumentation,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3