Enhanced extreme ultraviolet conversion efficiency of a 2 μ m laser-driven preformed tin-droplet target using short picosecond pre-pulses

Author:

Shi Z. Y.1ORCID,Yuan Y.2ORCID,Wang W. P.1ORCID,Ma Y. Y.3ORCID,Sun X. Y.14ORCID,Lin N.1ORCID,Leng Y. X.1ORCID

Affiliation:

1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS) 1 , Shanghai 201800, China

2. School of Nuclear Science and Technology, University of South China 2 , Hengyang 421001, China

3. College of Advanced Interdisciplinary Studies, National University of Defense Technology 3 , Changsha 410073, China

4. University of Chinese Academy of Sciences 4 , Beijing 100049, China

Abstract

In this study, an extreme ultraviolet (EUV) conversion efficiency (CE) of 6.9% was obtained in simulation by controlling the delay between a picosecond pre-pulse and a main-pulse with a wavelength of 2 μm; this value is about 7.5% higher than the ns pre-pulse scheme of the EUV emission produced by a 2 μm laser-driven tin-droplet target. In the simulation, the tin droplet expanded into hollow spherical structures after irradiation with a picosecond pre-pulse laser. Notably, compared with a nanosecond pre-pulse, in this case, the density of the tin plasma was lower, and the expansion range was wider for the same delay. Therefore, ps pre-pulse can make the tin plasma reach the optimal state of EUV emission in a shorter delay. In both pre-pulse schemes, the CE value maintains a high value (>5.7%) within a certain delay range (800 ns) between pre-pulse and main-pulse. In this study, the FLASH radiation hydrodynamic code and FLYCHK atomic code were used to investigate the energy conversion and spectra. The results obtained can be potentially useful for EUV lithography under a two-pulse scheme.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Key Research Programs in Frontier Science

Research Foundation of Education Bureau of Hunan Province, China

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3