Special role of indium nitride in the properties of related compounds and quantum structures

Author:

Gorczyca I.1ORCID,Suski T.1ORCID,Perlin P.1ORCID,Grzegory I.1ORCID,Staszczak G.1ORCID,Aktas M.1ORCID

Affiliation:

1. Institute of High Pressure Physics, Polish Academy of Sciences , ul. Sokołowska 29/37, 01-142 Warsaw, Poland

Abstract

This Review provides a thorough description of the experimental progress on the InN family and other relevant compounds. Although InN is of great interest, many of its properties are not well understood and are still puzzling researchers with a number of unexpected effects. These include a surprisingly small energy gap, sensitivity to applied pressure in terms of lattice stability, and poor miscibility with compounds with smaller lattice parameters, such as GaN and AlN. Special features of InN under pressure are highlighted, such as the effect of conduction band filling and the strong pressure dependence of the effective mass. Several negative and positive effects due to the presence of In have been observed. We highlight their implications for InN-based alloys and quantum structures, which are crucial materials in modern optoelectronics (light emitting diodes and laser diodes). These effects include In clustering, large piezoelectricity resulting in strong internal electric fields that reduce the optical gain in nitride heterostructures, and difficulties in growing high-In superlattices and other quantum structures. All of these effects pose challenges that need to be addressed. We show that theoretical explanations allow for the clarification of puzzling experimental observations. Discussed are (i) a reformulation of the rule describing the bandgap dependence on pressure in all III–V semiconductors; (ii) the very large bandgap curvatures in nitride alloys; and (iii) the discrepancies between theory and experiment in the optical emission from InN/GaN superlattices, leading to the conclusion that epitaxial growth of high In content InxGa1−xN (x > 0.3) quantum wells on GaN is not possible.

Funder

Narodowe Centrum Nauki

Publisher

AIP Publishing

Reference89 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3