Flutter limitation of drag reduction by elastic reconfiguration

Author:

Boukor Maryam1ORCID,Choimet Augustin1ORCID,Laurendeau Éric1ORCID,Gosselin Frédérick P.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Polytechnique Montréal , Montréal, Quebec P.O. Box 6079, Station Centre-Ville Montreal, QC H3C 3A7, Canada

Abstract

Through experiments, we idealize a plant leaf as a flexible, thin, rectangular plate clamped at the midpoint and positioned perpendicular to an airflow. Flexibility of the structure is considered as an advantage at moderate flow speed because it allows drag reduction by elastic reconfiguration, but it can also be at the origin of several flow-induced vibration phenomena at higher flow speeds. A wind tunnel campaign is conducted to identify the limitation to elastic reconfiguration that dynamic instability imposes. Here, we show by increasing the flow speed that the flexibility permits a considerable drag reduction by reconfiguration, compared to the rigid case. However, beyond the stability limit, vibrations occur and limit the reconfiguration. This limit is represented by two dimensionless numbers: the mass number and the Cauchy number. Our results reveal the existence of a critical Cauchy number below which static reconfiguration with drag reduction is possible and above which a dynamic instability with important fluctuating loads is present. The critical dimensionless velocity is dependent on the mass number. Flexibility is related to the critical reduced velocity and allows defining an optimal flexibility for the structure that leads to a drag reduction by reconfiguration while avoiding dynamic instability. Furthermore, experiments show that our flexible structure can exhibit two vibration modes: symmetric and anti-symmetric, depending on its mass number. Because the system we consider is bluff yet aligned with the flow, it is unclear whether the vibrations are due to a flutter instability or vortex-induced vibration or a combination of both phenomena.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3