Surface cavitation flow characterization of jet hydrofoils based on vortex identification method

Author:

Gu Yunqing12ORCID,Ma Longbiao12ORCID,Yu Songwei3,Yan Muhan12ORCID,Wu Denghao12,Mou Jiegang12

Affiliation:

1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

2. Zhejiang Engineering Research Center of Fluid Equipment and Measurement and Control Technology, China Jiliang University, Hangzhou 310018, China

3. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

The vortex structure is a typically coherent structure. The influence of hydrofoil jets with different chordal positions on the vortex structure in the hydrofoil flow field is investigated to improve the suppression mechanism of cavitation by jet hydrofoils. The investigation is based on a vortex identification method and the chordal position with the best suppression effect on the large-scale vortex on the hydrofoil surface is explored. In addition, the dynamics of the vortex structure in different cavitation states are analyzed by means of vortex transport equations based on the optimal chordwise position. The results show that the U-shaped vortex is the main morphology of the hydrofoil surface bubble shedding; the results show that the U-shaped vortex is the main form of cavitation shedding on the hydrofoil surface; compared with the original hydrofoil and other jet positions, the shedding of large-scale vortex structure can be suppressed better when the jet is located at 0.6c; the dominant vorticity transport terms are different in various cavitation stages. In the primary cavitation stage, the vorticity dilatation term is dominant. In contrast, during the development, maturation, and shedding phases, the vortex stretching term dominates, reducing the pressure gradient in the hydrofoil flow field and suppressing the strength of the return jet.

Funder

Zhejiang Provincial Natural Science Foundation of China

the Science and Technology Plan Project of State Administration for Market Regulation

Zhejiang Provincial Science and Technology Plan Project of China

Zhejiang University Student Science and Technology Innovation Program

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3