Enhanced robustness against hot-electron-induced degradation in active-passivation p-GaN gate HEMT

Author:

Yang Junjie1ORCID,Wei Jin1ORCID,Wu Yanlin1ORCID,Yu Jingjing1ORCID,Cui Jiawei1ORCID,Yang Xuelin2ORCID,Liu Xiaosen3ORCID,Wang Jinyan1ORCID,Hao Yilong1,Wang Maojun1ORCID,Shen Bo2

Affiliation:

1. School of Integrated Circuits, Peking University 1 , Beijing 100871, China

2. School of Physics, Peking University 2 , Beijing 100871, China

3. School of Integrated Circuits, Tsinghua University 3 , Beijing 100084, China

Abstract

The hot-electron-related reliability is an important issue for GaN power devices under harsh operation condition or environment. These high-energy electrons can scatter toward the device surface or buffer layer, introducing newly generated traps/defects and resulting in the degradation of dynamic ON-resistance (RON). This work investigates the dynamic characteristics in active-passivation p-GaN gate HEMTs (AP-HEMTs) after hot-electron stress (HES). Unlike the dielectric passivation whose dynamic RON performance is often reported to severely worsen as hot-electron-induced defects/traps accumulate, the active passivation is found to have a superior robustness against hot-electron stress. In this study, after an HES of 30 min with VD = 200 V and IS = 10 mA/mm, the dynamic RON/static RON of a conventional HEMT increases dramatically from 3.63 to 9.35 for VDS-OFF = 650 V, whereas that of AP-HEMT only shows a slight increase from 1.51 to 1.85. Two mechanisms have been experimentally proved for the improved hot-electron robustness in AP-HEMT. (i) The mobile holes in active passivation layer can effectively screen the preexisting and/or newly generated surface defects/traps from affecting the 2DEG channel. (ii) The recovery of buffer trapping is accelerated by hole injection from gate and active passivation.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3