Impact of compositional disorder on electron migration in lutetium–yttrium oxyorthosilicate scintillator

Author:

Talochka Y.1ORCID,Vasil'ev A.2ORCID,Korzhik M.3ORCID,Tamulaitis G.1ORCID

Affiliation:

1. Institute of Photonics and Nanotechnology, Vilnius University, 10257 Vilnius, Lithuania

2. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia

3. Institute for Nuclear Problems, Belarus State University, 220006 Minsk, Belarus

Abstract

A general description of the dynamics of nonequilibrium carriers in multicomponent activated scintillation materials with a compositional disorder of the crystalline matrix is developed and applied for studying the excitation transfer and timing properties of lutetium–yttrium oxyorthosilicate (LYSO). The energy structure, the density of states, and the effective potential of LSO and YSO crystals have been calculated by using the Quantum Espresso package. An analytical form of the potential fluctuations due to compositional disorder is suggested in the pseudopotential approximation. The spatial distribution of lutetium and yttrium cations in the LYSO crystal has been simulated by the Monte Carlo method using the thermodynamic approach for three qualitatively different cases of cation distribution: uniform, heterogeneous neighboring, and clustered. The impact of the compositional disorder on electron migration is found to be qualitatively different in four typical regions of electron energy. The density of localized states in LYSO calculated using the coherent potential approximation (CPA) and the quasiclassical approach is comparable to the density of secondary carriers expected in an ionization track and might have significant influence on the migration of thermalized carriers. The transport mean free path of nonlocalized electrons limited by elastic scattering on pseudopotential fluctuations is shown to be substantially longer than that due to longitudinal optical phonon emission in the low-energy region (calculated using CPA) and the high-energy region (calculated using the Born approximation). The scattering on pseudopotential fluctuations is important for intermediate-energy electrons due to a substantial influence of the core potential fluctuations on high-energy branches.

Funder

European Social Fund

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3