The tidal prism as a dynamic response of a nonlinear harmonic system

Author:

Petti M.1ORCID,Pascolo S.1ORCID,Bosa S.1ORCID,Busetto N.1ORCID

Affiliation:

1. Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine , Udine, Italy

Abstract

As known, the empirical relationship between the equilibrium cross-sectional area of a lagoon inlet and the tidal prism was intuited for the first time by LeConte [“Discussion on the paper, “Notes on the improvement of river and harbor outlets in the United States” by D. A. Watt,” Trans. ASCE 55, 306–308 (1905).] and then formalized by O'Brien [“Estuary tidal prism related to entrance areas,” Civ. Eng. 1(8), 738–739 (1931)]. This relationship requires knowledge of the tidal prism, which can be estimated either using the cubature method or the current data method [Jarrett, Tidal Prism-Inlet Area Relationships (Coastal Engineering Research Center, US Army Corps of Engineers, Fort Belvoir, VA, 1976)], both of which involve the execution of a number of experimental measurements. However, these methods, besides being very expensive, can only provide the prism value in the present condition and do not allow for predictions in the case of significant morphological changes, of both natural and anthropic origin, to the tidal inlet. On the other hand, the hydrodynamic relationship, which links the tidal prism to the product of the tidal range and the basin extension, can only give a coarse estimate of the prism, especially when the value of the tide outside the lagoon is considered. In this work, we propose a simple hydrodynamic relationship based on the dynamic response of a nonlinear harmonic system. This is a relationship that requires the calibration of a single physically based parameter. Through this relationship, knowing the geometric characteristics, the bottom friction of the inlet channel, the surface of the basin, and the tide amplitude in the open sea, it is possible to estimate the tidal prism. The application of this relationship to real cases shows a good agreement with the experimental data.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference55 articles.

1. Barrier island migration and morphologic evolution, Fire Island Inlet, New York;J. Am. Shore Beach Preserv. Assoc.,2004

2. On the tidal prism– channel area relations;J. Geophys. Res.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3