Affiliation:
1. Department of Electrical Engineering, Yale University , New Haven, Connecticut 06511, USA
Abstract
Atomic-like emitters in the solid state serve as important resources in the advancement of future quantum networks. In particular, intra-4f optical transitions of rare earth ions exhibit excellent coherence properties thanks to the shielding effect of outer electrons. Still, the presence of various dephasing channels in solid state hosts introduces additional decoherence beyond the radiative decay, causing the coherence time of most rare earth doped materials to be over an order of magnitude lower than the radiative limit. Such obstacle prevents the emission of indistinguishable photons from rare earth ions, which is an essential requirement for various quantum applications. In this work, we perform optical coherence study on erbium ions doped in thin-film lithium niobate by patterning photonic crystal resonators with quality factor around 100 k and sub-λ3 mode volume. Leveraging the combination of long coherence and strong Purcell enhancement in the cavity, we show that the coherence time measured with photon echo approaches the radiative limit (80%), representing a 50-fold improvement compared to the waveguide case. Our results present promising prospects toward utilizing rare earth doped materials as quantum repeaters and sources of indistinguishable photons.
Funder
U.S. Department of Energy
National Science Foundation
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献